Trades Math
The following sections provide resources to support trades students with the types of math problems they are likely to encounter in class and careers.
You can also check out the General Math section for more information and examples such as Arithmetic, Fractions, and Order of Operations.
The interactive workbooks linked in the table below were made specifically for trades students, by trades instructors. Each chapter provides video tutorials, practice questions with video analyses, practice tests, and stepbystep written examples. Each volume is an extremely valuable resource, no matter which way you prefer to learn!
Trigonometry
Trigonometry is a branch of mathematics that deals with the relationships between the sides and angles of triangles.
The Pythagorean theorem is a mathematical concept that explains the relationship between the sides of a right triangle. A right triangle is a triangle that has one angle that measures exactly 90 degrees. If you have a right triangle with sides a, b, and c (where c is the hypotenuse), the Pythagorean theorem says that:
SOH CAH TOA is a mnemonic device used to remember the basic trigonometric ratios for right triangles. The ratios are defined as follows:
Sine (sin): the ratio of the length of the side opposite an angle to the length of the hypotenuse (the longest side).
Cosine (cos): the ratio of the length of the adjacent side to the length of the hypotenuse.
Tangent (tan): the ratio of the length of the opposite side to the length of the adjacent side.
To remember these ratios, you can use the following:
 SOH: Sine is Opposite over Hypotenuse
 CAH: Cosine is Adjacent over Hypotenuse
 TOA: Tangent is Opposite over Adjacent
If you are looking for more information, practice, or tutorials, check out these links below:
Transposing Equations
Transposing equations, also known as solving equations for a specific variable, is the process of rearranging an equation to isolate a particular variable on one side of the equation.
Equations typically involve one or more variables and mathematical operations such as addition, subtraction, multiplication, and division. When transposing equations, the goal is to manipulate the equation in such a way that the desired variable is separated, and all other terms are moved to one side.
To transpose an equation, you follow a series of steps to isolate the variable you want to solve for. Here’s a general overview of the process:
 Identify the variable you want to solve for. Let’s call it “x.”
 Move all other terms (constants and other variables) to the opposite side of the equation. Use inverse operations to undo any operations performed on the variable you’re transposing.
 Continue simplifying the equation by applying the appropriate operations until you have the variable on one side and all other terms on the other side.
 Check your solution by substituting the value you obtained for the variable back into the original equation. If the equation holds true, you have successfully transposed the equation.
It’s important to note that when transposing equations, you should perform the same operation on both sides of the equation to maintain equality. For example, if you add a value to one side of the equation, you must add the same value to the other side.
If you are looking for more information, practice, or tutorials, check out these links:
 Transposing Equations – Math for Trades
 Transposition (Rearranging Equations) part 1 , Transposition (Rearranging Equations) part 2 , Transposition (Rearranging Equations) part 3 , Transposition (Rearranging Equations) part 4
 Electrical Formula Transposition – YouTube
 Transposing an equation: Trades Math – YouTube
Area and Perimeter
Area and perimeter are two fundamental concepts used to measure geometric figures such as polygons and circles. This Khan academy series covers how to calculate the area and perimeter for a variety of different shapes.
The area of a shape refers to the extent or size of its twodimensional surface. It measures the amount of space enclosed within the boundaries of the shape. The unit of measurement for the area is typically square units, such as square centimeters (cm²) or square meters (m²).
The perimeter of a shape refers to the distance around its outer boundary. It measures the total length of the shape’s sides or curves. The unit of measurement for the perimeter is typically the same as the unit used for measuring the sides of the shape, such as centimeters (cm) or meters (m).
The table below provides a quick reference tool for the equations used to calculate the area and perimeter of common shapes.
Shape  Area  Perimeter 

Square  Area = A x A or A²  Perimeter = 4 x A 
Rectangle

Area of a Rectangle
Area = L x W 
Perimeter
Perimeter = 2 (L+W) 
Parallelogram

Area of a Parallelogram
Area = B x h Here, B is the base, and h is the perpendicular height of the parallelogram. 
Perimeter
Perimeter = 2 (B + a) 
Triangle

Area of a Triangle
Area = 1/2 (B x h) Here, B is the base of the triangle (the entire length), and h is the height. 
Perimeter
Perimeter = a + B + c a² + b² = c² 
Circle

Area of a Circle
Area = π x r² r = 1/2 diameter Here, r is the radius of the circle. 
Circumference
Circumference = 2πr 
Trapezoids

Area of Trapezoids
Area = 1/2 (a + b) x h Here, a and b are the lengths of the parallel sides, and h is the perpendicular height of the trapezoid. 
Perimeter
Perimeter = a + b + 2c 
Composites  Area of Composite Shapes  Perimeter 
Surface Area and Volume
In mathematics, surface area and volume are measurements used to describe and quantify threedimensional shapes.
Surface area (SA) refers to the total area occupied by the outer surfaces of a threedimensional object. It represents the sum of the areas of all the faces, sides, and curved surfaces of the shape. Surface area is typically measured in square units, such as square centimeters (cm²) or square meters (m²).
For example, for a cube, the surface area can be calculated by adding up the areas of all six faces. If the length of each side of the cube is “a,” the formula for surface area (SA) is:
Similarly, for a cylinder, the surface area can be calculated by summing the areas of the two circular bases and the curved surface. The formula for the surface area (SA) of a cylinder with radius “r” and height “h” is:
Volume (V) refers to the amount of space enclosed by a threedimensional object. It measures the capacity or total internal space occupied by the shape. Volume is typically measured in cubic units, such as cubic centimeters (cm³) or cubic meters (m³).
To calculate the volume of regular shapes such as a cube or rectangular prism, you can multiply the length, width, and height. For example, the volume (V) of a rectangular prism with length “L,” width “w,” and height “h” is given by:
The volume (V) of a sphere with radius “r” is:
And the volume (V) of a cylinder with a base radius “r” and height “h” is:
For more information on the formulas used to calculate the surface area and volume for a variety of different shapes, please take a look at the links below:
Additional Resources
 The PrepSTEP database contains excellent tutorials and practice activities for the topics below and more. These resources are free for Lethbridge College students, but not for everyone, so you will have to login using your LC email address and password.
 Khan Academy is an online video resource that provides informative educational videos pertaining to Developmental math, algebra, and geometry.
 MathDrills.com is an online resource that provides printable worksheets on several fundamental math topics.
 Mathplanet offers robust educational videos, written resources, examples, and practice questions for various levels of math.
 Math Interactives is a multimedia resource that covers the topics of numbers, patterns and relations, shape and space, and statistics and probability. The website includes games and instructions that relate mathematics to realworld situations.
 Math Is Fun offers a range of mathrelated instructions, practice questions, worksheets, and games. This website also includes calculus and physics material.
Some content from the Trades Math webpage was generated using ChatGPT. OpenAI. (2023). ChatGPT (Mar 14June 21 versions) [Large language model]. https://chat.openai.com/chat.